Internal Algebra Classifiers as Codescent Objects of Crossed Internal Categories
نویسنده
چکیده
Inspired by recent work of Batanin and Berger on the homotopy theory of operads, a general monad-theoretic context for speaking about structures within structures is presented, and the problem of constructing the universal ambient structure containing the prescribed internal structure is studied. Following the work of Lack, these universal objects must be constructed from simplicial objects arising from our monad-theoretic framework, as certain 2-categorical colimits called codescent objects. We isolate the extra structure present on these simplicial objects which enable their codescent objects to be computed. These are the crossed internal categories of the title, and generalise the crossed simplicial groups of Loday and Fiedorowicz. The most general results of this article are concerned with how to compute such codescent objects in 2-categories of internal categories, and on isolating conditions on the monad-theoretic situation which enable these results to apply. Combined with earlier work of the author in which operads are seen as polynomial 2-monads, our results are then applied to the theory of non-symmetric, symmetric and braided operads. In particular, the well-known construction of a PROP from an operad is recovered, as an illustration of our techniques.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملCodescent Theory I: Foundations
Consider a cofibrantly generated model category S, a small category C and a subcategory D of C. We endow the category S C of functors from C to S with a model structure, defining weak equivalences and fibrations ob-jectwise but only on D. Our first concern is the effect of moving C, D and S. The main notion introduced here is the " D-codescent " property for objects in S C. Our long-term progra...
متن کاملCoverings and crossed modules of topological groups with operations
It is a well-known result of the covering groups that a subgroup G of the fundamental group at the identity of a semilocally simply connected topological group determines a covering morphism of topological groups with characteristic group G . In this paper we generalize this result to a large class of algebraic objects called topological groups with operations, including topological groups. We ...
متن کاملA General Framework for Homotopic Descent and Codescent
In this paper we elaborate a general homotopy-theoretic framework in which to study problems of descent and completion and of their duals, codescent and cocompletion. Our approach to homotopic (co)descent and to derived (co)completion can be viewed as ∞-category-theoretic, as our framework is constructed in the universe of simplicially enriched categories, which are a model for (∞, 1)-categorie...
متن کاملLimits in modified categories of interest
We firstly prove the completeness of the category of crossed modules in a modified category of interest. Afterwards, we define pullback crossed modules and pullback cat objects that are both obtained by pullback diagrams with extra structures on certain arrows. These constructions unify many corresponding results for the cases of groups, commutative algebras and can also be adapted to ...
متن کامل